
1

Design and Analysis of Classifier Learning
Experiments in Bioinformatics: Survey and Case

Studies
Ozan İrsoy, Olcay Taner Yıldız, Ethem Alpaydın, Senior Member, IEEE

Abstract—In many bioinformatics applications, it is important
to assess and compare the performances of algorithms trained
from data, to be able to draw conclusions unaffected by chance
and are therefore significant. Both the design of such experiments
and the analysis of the resulting data using statistical tests
should be done carefully for the results to carry significance.
In this paper, we first review the performance measures used
in classification, the basics of experiment design and statistical
tests. We then give the results of our survey over 1500 papers
published in the last two years in three bioinformatics journals
(including this one). Although the basics of experiment design
are well-understood, such as resampling instead of using a single
training set and the use of different performance metrics instead
of error, only 21 per cent of the papers use any statistical test
for comparison. In the third part, we analyze four different
scenarios which we encounter frequently in the bioinformatics
literature, discussing the proper statistical methodology as well as
showing an example case study for each. With the supplementary
software, we hope that the guidelines we discuss will play an
important role in future studies.

Index Terms—Statistical tests, Classification, Model selection

I. INTRODUCTION

In many bioinformatics applications, there is an underlying
process whose details we barely know, but we can collect a
sample of examples from the process by doing experiments,
and using machine learning techniques, we can make statistical
inference about the process from this sample. In supervised
learning, the sample is composed of pairs of independent and
dependent variables and the aim is to learn a mapping from
the independent variable to the dependent. In classification, the
dependent variable is a class code and the aim is to devise a
rule that can predict the class labels of instances. For example,
a biologist may want to categorize a given protein as binding or
non-binding, and this is a two-class problem. The independent
variable is represented by a feature set x composed of different
properties of a protein, such as the amino acid sequence, the
evolutionary information, structural information, and so on. If
the discriminant function that is used for predicting the class
label is denoted by f(x|φ), different models, e.g., decision
trees, support vector machines, neural networks, correspond
to different f(·) and learning corresponds to optimizing the
model parameters φ to minimize some loss measure on a given
training sample [1].

Ozan İrsoy and Ethem Alpaydın are with the Department of Computer
Engineering, Boğaziçi University, 34342, İstanbul Turkey. Olcay Taner Yıldız
is with the Department of Computer Engineering, Işık University, 34398,
İstanbul Turkey.

Typically, we have candidate fi(·|φi), where i = 1, . . . , L
are different learning algorithms, and we want to choose the
best according to some performance measure. The aim is to
find the algorithm that generalizes best to unseen data and to
measure that, we use a validation set on which we test how
well our trained f(·|φ) performs. Because the examples in the
training and validation sets are random variables drawn from
some unknown joint probability distribution, the discriminant
we fit to the sample contains some randomness. Although
we use the same classification algorithm, different training
samples may induce different classifiers and in making a
decision among algorithms, we need to make sure that our
decision is not affected by chance, for example, by how the
data is split between training and validation sets.

In the statistics literature, there is considerable body of work
done on the design and analysis of experiments [2]—the aim of
this paper is to discuss those principles in the context of clas-
sification experiments in bioinformatics and show the proper
methodologies using case studies. In experiment design, there
is a process which takes an input and generates an output;
the output is affected by a number of factors some of which
are controllable and some are not. In our case, the process is
the classifier which after having been trained on a training set
gives the class as output for an input from the validation set.
Here, the major controllable factor is the learning algorithm
and the major uncontrollable factor is the randomness in the
data. The aim is to find the configuration of controllable
factors that maximize a response variable measuring quality. In
classification, there are different performance metrics that can
be calculated from that data, such as, misclassification error,
hit rate, precision, and so on. In Section II, we discuss such
metrics in detail and also point out how they differ, to be able
to point out which one to use in which type of experiment.

The three principles of experimental design are random-
ization, replication, and blocking—in machine learning, these
imply the need for multiple paired runs using resampling.
Once a set of experiments are done and we have a set of
results, statistical hypothesis testing is used to check for
differences that are significant, that is, unlikely to have been
caused by chance. We discuss the resampling procedures in
Section III, statistical tests in Section IV, and give pointers to
related work in Section V.

We did a survey on the use of such procedures in the
recent bioinformatics literature to check how frequently these
different approaches to experiment design and analysis have
been employed; the results are given in Section VI.

Digital Object Indentifier 10.1109/TCBB.2012.117 1545-5963/12/$31.00 © 2012 IEEE

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

2

Then in Section VII, we review four different scenarios we
encounter frequently in classification experiments and show
the proper methodology for each using a case study. We
conclude in Section VIII.

II. ASSESSING PERFORMANCE

A. Confusion Matrix and the Measures of Performance

In a two-class problem, we have positive and negative in-
stances, for example, binding vs. nonbinding proteins. Having
trained our classifier f(x|φ) on the training set, typically we
predict that x drawn from the validation set is a positive
example if f(x|φ) ≥ θ, for some threshold θ. We can assume
that f(x|φ) ∈ [0, 1] estimates the posterior probability that x is
a positive example 1, that is, P̂ (+|x) ≡ f(x|φ). We say that x
is a negative example if f(x|φ) < θ and P̂ (−|x) ≡ 1−f(x|φ).
Then, depending on the true label of x, there are four cases
which make up the confusion matrix and we count the number
of their occurrences over the whole validation set (Table I):

• True positive (tp): The number of instances for which
both the class label and the predicted class are positive.

• False negative (fn): The number of instances for which the
class label is positive but the predicted class is negative.

• False positive (fp): The number of instances for which the
class label is negative but the predicted class is positive.

• True negative (tn): The number of instances for which
both the class label and the predicted class are negative.

TABLE I
2× 2 CONFUSION MATRIX

Prediction
Truth + - Total

+ tp fn p

- fp tn n

Total p′ n′ N

Different performance measures used in the literature are
all calculated from these four values:

error rate =
fp+fn

N accuracy =
tp+tn

N
tp-rate =

tp
p fp-rate =

fp
n

recall = tp
p precision =

tp
p′

sensitivity =
tp
p specificity = tn

n

F-measure = 2
precision·recall
precision+recall = 2

tp
p+p′

Balanced accuracy =
sensitivity+specificity

2

(1)

Tp-rate, also known as the hit rate, is the same as recall
and sensitivity. Fp-rate is sometimes called false alarm rate,
and is equal to 1−specificity. Different names for these related
measures are due to historical reasons where they have been
proposed in different domains, namely, signal processing,
information retrieval, or diagnostics, almost independently.

1Possibly after some normalization, if the classifier is a nonprobabilistic
classifier such as a support vector machine.

B. Performance Curves and the Area Under the Curves

The threshold θ of decision depends on the relative costs
of a false positive and a false negative. We use θ = 0.5 when
they have equal cost and for example θ needs to be larger
when a false positive has a higher cost than a false negative.
In some cases, we do not know the exact costs and we may
want to see how the performance measure varies as we vary
them, which corresponds to varying θ. Then we can plot the
performance as a function of θ to see the overall behavior.
A receiver operating characteristics (ROC) curve is a plot
of tp-rate (hit rate) and fp-rate (false alarm rate); similarly,
one can plot a precision-recall curve or a sensitivity-specificity
curve [3]. Some people use a “partial curve” when they are
interested in the performance of the classifier in a particular
subrange for θ (that corresponds to a subrange for costs of
misclassification); our discussion holds also for this case where
instead of the whole curve, we use a subset of the curve.

Curves are complex and it is difficult to compare two curves.
One way to summarize a curve (full or partial) by a single
value is by calculating the area under the curve (AUC), which
can be estimated by summing the trapezoidal areas formed by
successive points on the performance curve [3]. The two most
popular are the ROC curve of tp-rate vs fp-rate and the area
under it (AUC-ROC) and the Precision-Recall (PR) curve and
the area under it (AUC-PR).

PR curve is mostly used in information retrieval [4] where
for a query, some of the stored items are relevant (the true label
is positive) and some are not (the true label is negative). Given
x that are the attributes associated with the item, we retrieve
some of them (the predicted label is positive) and some we do
not (the predicted label is negative). In this context, precision
is the proportion of the relevant and retrieved documents to
the total number of retrieved documents, and recall is the
proportion of the relevant and retrieved documents to the total
number of relevant documents.

Note that ROC measures the performance of a two-class
classifier and checks for good performance on both positives
and negative instances, whereas in an information retrieval
application (whose performance is measured by PR), we have
basically a one-class problem where we care for the positives
more. In an application like medical diagnosis, more than the
true negatives, i.e., the large proportion of healthy individuals,
we care about detecting the sick, and it is better to focus on
PR. In an application where we classify face images as male
or female, we care about the accuracy on both genders, and
need ROC to measure performance.

PR is sensitive to class skewness, whereas ROC is not [5].
When the ratio p/n changes, because precision uses values
from both rows of Table I, it changes; however tp-rate and fp-
rate may not change since they use values from only one row
[3]. PR and ROC make different statistics apparent: In PR, we
are basically interested in how well we classify the positive
examples, whereas in ROC, in trying to minimize fp-rate, we
also want to increase the true negative rate. This makes sense
in information retrieval, for a given query, adding a lot more
irrelevant documents (which we will not be retrieving anyway)
has no effect on our performance assessment for this query.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

3

A one-to-one correspondence between a ROC curve and a
PR curve has been shown [5]. It has also been proven that one
ROC curve dominates the other ROC curve if and only if the
corresponding PR curve dominates the other [3]. Despite the
dominance relationship between ROC and PR curves, if AUC-
ROC of the first curve is greater than the second one, AUC-PR
of the first curve can be less than the second one, therefore
optimizing for AUC-ROC does not mean also optimizing for
AUC-PR. The corresponding points in curves can dominate
each other in parallel in ROC and PR curves; however it is
the magnitude of these differences that determines the area
differences and consequently, since the metrics are different,
the area between the curves may be different.

III. RESAMPLING PROCEDURES

When we are comparing two or more algorithms trained
from data, the training algorithm may have some randomness
(for example, gradient descent starts from a random initial
point), or the way the data is divided between training and
validation sets is random. If we do training and validation
only once, we can not know if any difference between two
results is because of difference in algorithms or because of
the split of data.

The three basics of experimental design are randomization,
replication, and blocking. To be able to average out the
effect of randomness and hence arrive at conclusions deemed
statistically significant, we do the training and validation
multiple times randomly (randomization), run the algorithms
many times (replication), and compare the distributions of
results rather than single values. This requires that we be able
to generate multiple training and validation set pairs from a
single data set. Note that when we are comparing a number of
algorithms, they should all use the same training and validation
splits so that we make sure that any difference is due to the
algorithm (the controllable factor) and not due to the split of
data (uncontrollable factor); this is the idea behind paired tests
(blocking). We also require stratification, that is, the proportion
of positive to negative instances is respected in all parts so that
the prior class probabilities do not change between folds.

There are various resampling algorithms [1]:

1) In k-fold cross-validation (cv), we divide the data ran-
domly into k equal parts. At each fold, we leave one of
the k parts out as the validation set and use the remaining
k− 1 parts together as the training set. By cycling over
all the k parts, we get k training and validation set pairs.

2) Leave-one-out is the extreme case of k-fold cv, where k
is taken to be equal to N , the number of instances in the
training set. That is, at each fold, we use N−1 instances
for training and one instance for validation, leaving out
another one, in a total of N folds. With very small data
sets, leave-one-out is used.

3) In k1 × k2-fold cross validation, there is an outer loop
that replicates k2-fold cv k1 times and a statistic is
defined over the k1 · k2 results. Examples are 5 × 2 cv
[6], [7] and 10× 10-fold cv.

4) In bootstrap, from a sample of N instances, we draw
N instances with replacement, so some instances may

be drawn more than once, and some never. Different
training folds hence partially overlap. The whole set is
used as the validation set in all folds [8].

We use the following notation: Let yij denote the per-
formance of classifier i = 1, . . . , L on validation fold j =
1, . . . , k. The performance value can be the misclassification
error rate, precision, area under the ROC curve, and so on.
Then, for example, in comparing algorithms 1 and 2, we need
to compare the distributions of y1j and y2j , j = 1, . . . , k.

IV. STATISTICAL TESTS

In hypothesis testing, we have a null hypothesis H0 that we
want to test on the sample, against an alternative hypothesis
H1. For example

H0 : μ = 2 vs. H1 : μ �= 2

What we do is we collect a sample and then calculate a
statistic on the sample and check the probability that this
statistic takes a particular value or higher under the assumption
that the null hypothesis is true. If that probability—the so-
called p value—is very small, i.e., smaller than a pre-defined
significance value α, e.g., 0.05, we reject the null hypothesis in
favor of the alternative hypothesis, otherwise we fail to reject
it. Note that a failure to reject does not imply the truth of
the null hypothesis, nor rejection implies that the alternative
hypothesis is correct. If we reject when the null hypothesis
holds, this is a type I error; the failure to reject when the null
hypothesis is wrong is a type II error.

Typically, there are four scenarios where hypothesis testing
is used in classification experiments (see Table II):

1) We have two algorithms that we want to compare on
a single data set in terms of some performance metric.
This is typically the most frequently used scenario. For
example, we may want to compare two algorithms in
terms of error, or AUC-ROC. Or, we may want to test
two variants of the same algorithm; for example, we may
want to see if having feature selection before our neural
network leads to significant improvement.

2) We have L > 2 algorithms that we want to compare
on a single data set in terms of some metric. These
may be different algorithms or different variants of the
same algorithm; for example, we may be interested in
comparing L > 2 different feature extraction algorithms
that precede the classifier.

3) We have two algorithms that we want to compare on
M > 1 data sets in terms of some performance metric.
For example, we may have M different cancer data
sets but because of different properties of the data sets,
we cannot combine them in a single data set to train
a single classifier. What we want is to train and test
both algorithms separately on these data sets, compare
performances on each separately and then combine those
comparisons to get an overall result.

4) We have L > 2 algorithms that we want to compare on
M > 1 data sets in terms of some performance metric.
This is the most general case.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

4

TABLE II
SCENARIO AND TESTS WE USE.

Number of Number of data sets
algorithms M = 1 M > 1

L = 2 5× 2 cv F test Wilcoxon’s signed rank test
L > 2 ANOVA + 5× 2 cv F test Friedman’s and Nemenyi’s test

Now let us see the tests for each scenario one by one2.
Later on, in Section VII, we will see how each one is used in
a real-world case study.

A. Comparing Two Algorithms on a Single Data Set

The number of errors (or true positives, precision, and
even AUC) is a count of 0/1 events and is hence binomially
distributed. Unless the validation set is very small, from the
central limit theorem, the binomial converges to the normal
distribution and we can use parametric tests based on the
normal distribution.

We want to compare the expected performance values of
the two algorithms:

H0 : μ1 = μ2 vs. μ1 �= μ2 (2)

and in a paired setting, we test if their paired difference has
zero mean:

H0 : μd ≡ μ1 − μ2 = 0 vs. μd �= 0. (3)

Dietterich [6] has compared various pairwise tests, including
McNemar’s test which uses a single training/validation pair,
and the t test used with k-fold cross-validation. He then
proposed the 5×2 cross-validation sampling and an associated
t test, which he has shown to have lower type I and type II
errors. The 5 × 2 cross-validation F test [7] is an improved
version of this t test and it works as follows:

In 5×2 cross-validation, we perform 2-fold cross-validation
five times. Let us say p

(j)
i is the difference between the

performance values of the two algorithms on fold j = 1, 2
of replication i = 1, . . . , 5. The average on replication i is
pi = (p

(1)
i + p

(2)
i)/2 and the estimated variance is s2i =

(p
(1)
i − pi)

2 + (p
(2)
i − pi)

2.
Under the null hypothesis that the two algorithms have the

same expected performance, p(j)i is approximately normal with
mean 0 and its square divided by the variance is chi-squared
and hence

f =

∑5
i=1

∑2
j=1(p

(j)
i)2

2
∑5

i=1 s
2
i

(4)

is F -distributed with 10 and 5 degrees of freedom [7]. We
reject the null hypothesis that two algorithms have the same
expected performance if f > Fα,10,5.

B. Comparing L > 2 Algorithms on a Single Data Set

Analysis of Variance (ANOVA) tests if all populations have
the same mean:

H0 : μ1 = μ2 = · · · = μL vs. μr �= μs, for any r �= s. (5)

2Matlab functions for these tests are made available as a supplement.

In our case, this corresponds to checking if all algorithms
have the same expected performance.

Let us say yij , i = 1, . . . , k, j = 1, . . . , L is the performance
value of algorithm j on fold i. The average performance of
algorithm j on all folds and the overall average are defined as

mj =

∑k

i=1 yij
k

, m =

∑L

j=1 mj

L

ANOVA calculates the between- and within-algorithm sums
of squares

SSb = k
∑
j

(mj −m)2 , SSw =
∑
j

∑
i

(Xij −mj)
2

Both are chi-square distributed random variables. Under the
null assumption, their ratio after each is divided by its degrees
of freedom

f =
SSb/(L− 1)

SSw/L(k − 1)
(6)

is F distributed with L−1, L(K−1) degrees of freedom. We
reject the null hypothesis that all algorithms perform equally
well if f > Fα,L−1,L(K−1).

If the test fails to reject, all are equally good. If the test
rejects, we know that there is an inequality somewhere. To
find where, we do a set of pairwise posthoc tests to try to
find cliques, that is, subsets of algorithms in which there is
no significant difference between any two. To do this, we first
sort all L algorithms in terms of average performance and
then we compare the first and the last in a pairwise manner
for significant difference. If the test rejects, we take the first
L− 1 leaving out the last and compare the first and the L−
1st; we also compare the second and the Lth leaving out the
first. As long as there is a reject, we keep on leaving out
the first and the last recursively and on both sides. At any
stage if the test fails to reject, we underline that group and we
do not examine it any further. This compares all consecutive
subsets of algorithms and the underlines (which may partially
overlap) indicate cliques of algorithms whose performances
are comparable in terms of the metric we use. For example,
with algorithms A,B,C,D,E, we may have the result

B C A E D

Here, {B,C,A} form one clique, and {A,E} form another
clique; for example, there is significant difference between B
and E and also between E and D.

C. Comparing Two Algorithms on M > 1 Data Sets

When we have values calculated over different data sets, we
can no longer use any parametric test because the performance
over different data sets do not come from a normal or any
known distribution (That is why, it does not make sense to

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

5

calculate the average performance over different data sets
either). In this case, we can only use a nonparametric test
that compares which of the two algorithms is better in how
many of these different data sets—if we do resampling and
have results on multiple folds, we compare the averages over
the folds. On some of these data sets, the first one wins, on
some the second wins (the first loses) and on the rest, they
tie. We then need to check if those number of wins and losses
is likely under the null hypothesis that the two algorithms
perform equally well, i.e., when the win probability is 1/2—
ties are equally split between wins and losses. This is called
the sign test. If if the first algorithm wins in 12 data sets out
of 20 and loses on 8, the null hypothesis that they are equally
good can be claimed; if however the first wins in 19 out of
20 and loses on one, that would be a very rare event if indeed
they were equally good, and it makes sense to reject.

The Wilcoxon’s signed rank test is an extension of the sign
test and uses the same idea except that it also takes into
account the difference in performance for wins and losses.
We calculate the difference at each fold as dj = y1j −y2j and
then sort them in terms of |dj | and give them ranks between 1
and M . If ties occur, we give them the average of what they
would get if they differed slightly. We then calculate w+ as
the sum of all ranks whose signs of difference are positive
and w− as the sum of ranks whose signs of differences are
negative. The null hypothesis that μ1 = μ2 can be rejected if
either of w+ and wi, that is, min(w+, w−) is very small. The
critical values for the Wilcoxon’s signed rank test are tabulated
and for M > 20, normal approximation can be used.

D. Comparing L > 2 Algorithms on M > 1 Data Sets

When we have more than two algorithms, on each data set
we do not have a win/loss/tie; instead, each algorithm assumes
a rank between 1 and L in terms of its performance (averaged
over different folds). We then use nonparametric tests to check
for significant difference in average ranks over the M data sets.

Friedman’s test is the nonparametric version of ANOVA and
uses ranks instead of the absolute performances [9]. On each
data set j, the performance values of the algorithms are sorted
from the best to the worst so that the best one gets the rank of
1, the second 2, and so on, until we get to L. Let rij denote
the rank of algorithm i = 1, . . . , L on data set j = 1, . . . ,M .
The average rank of algorithm i over the M data sets is

Ri =
1

M

∑
j

rij

The test statistic of Friedman’s test is

χ2
F =

12M

L(L+ 1)

[∑
i

R2
i −

L(L+ 1)2

4

]
(7)

which, under the null hypothesis that all algorithms are equally
good, is chi-square distributed with L−1 degrees of freedom.
An improved statistic

F 2
F =

(M − 1)χ2
F

M(L− 1)− χ2
F

(8)

is F distributed with L − 1 and (L − 1)(M − 1) degrees of
freedom.

If Friedman’s test rejects, we use Nemenyi’s test as the
posthoc test to compare neighboring algorithms for significant
difference in rank [9]. Two algorithms lead to classifiers with
significantly different performance ranks at significance level
α if the difference of their average ranks is greater than or
equal to the critical difference

CD = qα

√
L(L+ 1)

6M
(9)

where qα is the Studentized range statistic divided by
√
2. This

again allows us to find cliques of equally good subsets which
we can represent by underlining them.

V. RELATED WORK

The importance of good experimental design and the use
of resampling algorithms and hypothesis testing in learn-
ing algorithms was discussed by Cohen [10]. In the first
textbook on machine learning, Mitchell dedicates a chapter
to hypothesis testing for the assessment and comparison of
learning algorithms [11]. In another early work, Salzberg
draws attention to the risk of the use of the same, small
number of data sets repeatedly by many researchers [12] which
may result in algorithms too much finetuned to and hence
overfitting those particular data; this risk holds for the domain
of bioinformatics where experimentation to collect new data
is expensive.

In a seminal study, Dietterich [6] reviews four statistical
tests and proposes the 5 × 2 cross-validation method and an
associated paired t test for comparing the error rates of two
classification algorithms. Resampling has the risk of high type
I error, and this issue has been theoretically investigated by
Nadeau and Bengio [13]; they propose variance correction to
take into account not only the variability due to test sets, but
also the variability due to training examples. Bouckeart [14]
shows that the widely used t test has superior performance
compared to the Sign test in terms of replicability. On the other
hand, he found the 5×2 cv t test dissatisfactory and suggested
the corrected resampled t test. Hastie et al. [15] discuss the
wrong and right ways of doing k-fold cross-validation.

The use of measures alternative to error/accuracy is old.
AUC-ROC has been related to the Wilcoxon statistic and it
is possible to calculate the required number of positive and
negative examples for comparing two AUC-ROC values for
given type I and type II probabilities [16]. Both AUC-ROC and
AUC-PR use a single training and testing pair [17], [18], [19];
Hanley and McNeil [20] argue that comparing different ROC
curves with a single data set limits their usefulness. One can
use a resampling algorithm, such as k-fold cross-validation, to
generate k ROC or PR curves hence k AUC-ROC or AUC-
PR values. After fitting distributions to AUC-ROC or AUC-PR
values, one can test hypotheses on them, as we discuss here.

More recently, Cortes and Mohri [21] have proposed to cal-
culate confidence intervals for AUC-ROC from the confidence
interval of error without any parametric assumptions. First,
they define the expectation and variance of AUC-ROC in terms
of the expected error, the number of negative instances and the
number of positive instances by using the Wilcoxon-Mann-
Whitney statistic. Using these values, the confidence intervals

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

6

are constructed without any assumption on the distribution for
AUC-ROC. For large values of the sample size, they make a
normal distribution assumption for error. Fitting distribution
to AUC-ROC values has also been used by Bravo et al [22],
though they do not compare it with the error and just use it to
evaluate their results. The effect of class distribution on error
and AUC-ROC is experimented in [23].

Hanczar et al. [24] discuss small sample estimation of ROC
related samples and the difference of the estimated and true
values of the AUC, tp-rate and fp-rate. Through a simulation
study and analysis of real microarray data, they show that the
difference is considerable. Swamidass et al. [25] propose the
concentrated ROC framework in which any relevant portion
of the ROC curve is magnified smoothly by an appropriate
continuous transformation. The area under the ROC curve
assesses retrieval performance of the relevant portion. Similar
to ROC curves, PR curves are also used for performance
evaluation [26], mostly in information retrieval applications
[27] and they are preferred to ROC curves when the class
distribution is skewed [4], [5], [28], [29].

Bengio et al. [30] argue that reporting statistics from ROC
curve such as a break-even point may be misleading, and
propose the expected performance curve to provide unbiased
estimates at various operating points. Drummond et al. [31]
introduce cost curves for visualizing the error rate or expected
cost of two-class classifiers over all possible class distributions
and misclassification costs. They argue that cost curves are
better than ROC curves for visualization, for example in
showing confidence intervals and visualizing the statistical
significance of the difference between two classifiers.

When we compare L > 2 algorithms, after we apply the
pairwise posthoc tests on all pairs, we may find pairs where
the test does not reject, and in such a case, we underline such
cliques. To break ties and get a full ordering, MultiTest [32]
combines the results of the pairwise tests with a cost measure
that specify a prior preferrence on algorithms. Various types of
cost can be used [33], e.g., the space and/or time complexity
during training and/or testing, interpretability, ease of pro-
gramming, etc. In a bioinformatics application where different
algorithms use results of different experimental procedures as
inputs, some more costly than others, the cost of extracting
the input may be another cost measure. Multi2Test uses the
same methodology to order algorithms on multiple data sets
[34].

When doing multiple comparisons, there are various meth-
ods to adjust the value of α for each comparison. The simple
method is Bonferroni correction [35]. If we compare L algo-
rithms, there are L(L−1)/2 comparisons, and the Bonferroni
correction sets the significance level of each comparison to
α/(L(L − 1)/2). Nemenyi’s test is based on this correction,
and that is why it has low power for large L. Garcia and
Herrera [36] explain and compare the use of various correction
algorithms, such as, Holm correction [37], Shaffer’s static pro-
cedure [38] and Bergmann-Hommel’s dynamic procedure [39].
They show that although it requires intensive computation,
Bergmann-Hommel has the highest power.

VI. SURVEY OF CLASSIFICATION EXPERIMENTS IN

BIOINFORMATICS LITERATURE

To observe the practice of researchers in bioinformatics
applications of machine learning for scenarios related to those
discussed in this paper, we did a survey by examining the
published papers in three journals (one of which is this one)
in the years 2010 and 2011. Table III shows the number of
papers surveyed in our work3. We include all the papers except
software, application notes and proceedings. Among all the
papers, we look at the ones related to machine learning and
among those, we focus on those that use classification, which
is our topic of study in this paper.

TABLE III
NUMBER OF PAPERS SURVEYED

Journal All Papers ML Related Classification
BMC Bioinformatics 2010 466 167 71
Bioinformatics 2010 334 167 65
IEEE/ACM TCBB 2010 69 34 20
Total (2010) 869 368 156
BMC Bioinformatics 2011 266 85 41
Bioinformatics 2011 272 99 28
IEEE/ACM TCBB 2011 125 54 21
Total (2011) 663 238 90
Grand total 1532 606 246

The results show that during these two years, 606/1532 =
40% of the papers are machine learning related, and
246/606 = 41% of these are related to classification tasks; the
percentages do not change much from year to year. These high
percentages indicate that there is a fair amount of classification
done in the bioinformatics community, and these tasks require
measures to evaluate the performances of different classifiers
in different settings and domains—what we discuss in this
paper relates to approximately 16% of the papers published in
the last two years in these three journals.

From these papers that use classification, we collect data
related to

1) the attributes of the problem (the number of classes and
the number of input dimensions),

2) the attributes of the learning method (whether input
dimensionality reduction is done or not, and the clas-
sification algorithm), and

3) statistical methodology used (resampling strategy, per-
formance metrics, and the statistical test, if any is used).

Table IV shows the attributes we are interested in and
their percentages in the years 2010, 2011, and in total. These
percentage values are not mutually exclusive, e.g., if there are
both two-class and multi-class data sets in a paper, that paper
is included in both of the statistics; hence, these values do not
always sum up to 100. Based on this data and our observations
of these papers, we reach the following conclusions:

• We observe that most of the classification tasks are two-
class classification tasks. This shows that the measures
based on the confusion matrix (as given in Eq. 1), such
as precision, recall, and so on, are applicable in most
situations.

3A spreadsheet of this data is made available as a supplement.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

7

TABLE IV
PERCENTAGES OF ATTRIBUTES OF CLASSIFICATION PROBLEMS,

STATISTICAL METHODOLOGIES, AND THEIR PERCENTAGES IN THE
SURVEYED PAPERS

Attribute Percentage
2010 2011 Total

Two-Class 79 54 70
Multi-Class 23 47 32
Performance Metrics
Accuracy / Error Rate 63 73 67
Precision (Positive Predictive Value) 28 26 27
False Positive Rate 10 13 11
F-Measure 17 14 16
Sensitivity (Recall, True Positive Rate) 49 54 51
Specificity 27 32 29
Receiver Operating Characteristics Curve 28 20 25
Area Under the ROC Curve 44 27 38
Precision-Recall Curve 11 4 9
Data Set Size
1-9 1 0 0
10-99 25 20 23
100-999 55 55 55
1000-9999 29 33 31
10000+ 26 19 23
Input Dimensionality
1-9 9 9 9
10-99 27 26 26
100-999 23 34 27
1000-9999 22 29 25
10000+ 21 21 21
Kernel/Other/Unspecified 24 10 19
Dimensionality Reduction 40 43 41
Algorithm Used
Decision Tree (DT) 26 24 26
Support Vector Machine (SVM) 51 69 57
Rule Based Learning 4 3 4
Artificial Neural Network (ANN) 10 17 13
Naive Bayes (NB) 16 14 15
k-Nearest Neighbor (KNN) 15 17 15
Resampling Strategy
k-fold Cross Validation 58 61 59
k1 × k2-fold Cross Validation 11 9 10
Leave-One-Out 21 18 20
Bootstrapping 4 4 4
Independent Test Set 33 29 31
k Random Partitions Into Training/Test Sets 7 7 7
Statistical Tests for Comparison
Parametric Test 13 6 10
Nonparametric Test 10 12 11
Other/Unspecified 1 1 1

• As expected, accuracy/error rate is the most frequently
used metric. In cases where one needs to focus on the
positives, precision and recall are also used. The use of
the area under the ROC curve seems to be established in
the community, but of the papers which give AUC values,
only 51 per cent show the actual ROC curves. Precision-
recall curves are also used though less frequently.
We check for dependency between the type of classifica-
tion problem and the performance measure used. Table
V shows the percentages with which various performance
metrics are used in two-class and multi-class classifica-
tion problems. As expected, accuracy/error rate is used
in multi-class problems more than in two-class problems
and in two-class problems, the percentages of the use of
precision/recall, sensitivity/specificity, or ROC curve or
AUC-ROC are higher.

• Data set sizes indicate that in nearly half of the problems,

TABLE V
PERCENTAGES OF PERFORMANCE METRICS FOR TWO-CLASS AND

MULTI-CLASS PROBLEMS

Two-Class Multi-Class
Accuracy / Error Rate 63 75
Precision (PPV) 28 26
False Positive Rate 13 6
F-Measure 16 15
Sensitivity (Recall, TPR) 54 46
Specificity 33 22
ROC Curve 30 14
Area Under the ROC Curve 46 21
Precision-Recall Curve 10 5

TABLE VI
PERCENTAGES OF THE USE OF A DIMENSIONALITY REDUCTION METHOD

FOR DIFFERENT INPUT DSSIMENSIONALITIES

Input Dimensionality Dimensionality Reduction
1-9 23
10-99 31
100-999 39
1000-9999 66
10000+ 75

the data set size is less than 1000 and in such cases,
the variance of any statistic calculated from the data can
be high. The use of suitable resampling strategies and
hypothesis testing is hence apparent.

• Bioinformatics applications generally have high dimen-
sional inputs—almost one-fifth of papers use data that
have more than 10000 inputs!—indicating a higher
propensity for overfitting with small data. In some papers,
input dimensionality is not specified, in some, sequences
of different lengths are processed, e.g., using hidden
Markov models, and in some (with support vector ma-
chines), rather than in a vectorial form, a pairwise kernel
matrix is used for inputs. Because many applications have
high dimensional data, it is not surprising that some sort
of dimensionality reduction is done before classification.
As expected, we see in Table VI that the percentage of
the use of dimensionality reduction increases as the input
dimensionality increases.

• Support vector machines and decision trees (mostly
random forests) are currently the best known off-the-
shelf learning algorithms and they are also those most
frequently used in bioinformatics applications. It has also
been noted in a recent editorial [40] that the use of neural
networks and hidden Markov models are decreasing
whereas support vector machines and random forests are
becoming more popular. Since support vector machine
works well in small sample settings due to its inherent
regularization and random forest works well in high
dimensional, noisy data due to its averaging behavior,
the use of these algorithms is justified.
We check if there is a correlation between the algorithms
used and data set size, input dimensionality, and whether
or not dimensionality reduction is done before. As we
see in Table VII, there does not seem to be any strong
interaction. We would expect to see k-NN more with
smaller data sets (because it needs to store the whole
set) and naive Bayes more when input dimensionality

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

8

TABLE VII
PERCENTAGES OF DATA SET SIZE, INPUT DIMENSIONALITY AND THE USE

OF DIMENSIONALITY REDUCTION FOR DIFFERENT ALGORITHMS

DT SVM ANN NB KNN
Dataset Size
1-9 0 0 0 0 0
10-99 22 26 13 18 34
100-999 57 57 61 58 58
1000-9999 27 32 26 24 24
10000+ 24 19 19 26 16
Other / Unspecified 0 1 0 0 0
Dimensionality
1-9 10 4 16 21 3
10-99 40 26 39 32 21
100-999 33 34 42 34 26
1000-9999 25 26 10 29 47
10000+ 16 23 10 24 26
Kernel / Other / Unspecified 6 16 10 8 11
Dimensionality Reduction 43 45 39 47 53

TABLE VIII
PERCENTAGES OF RESAMPLING STRATEGIES FOR DIFFERENT DATA SET

SIZES

10-99 100-999 1000-9999 10000+
k-fold cv 46 58 71 65
k1 × k2-fold cv 12 12 7 5
Leave-One-Out 32 21 13 9
Bootstrapping 12 6 4 2
Independent Test Set 37 35 34 35
k Random Partitions 7 7 7 5

is high (because it assumes independent inputs) or less
dimensionality reduction with artificial neural networks
(because it does its own feature extraction in its hidden
units) and to a certain extent the data reflect these, but
we do not see a strong domination of one algorithm
over another one for a given data set size or input
dimensionality.

• With small samples, leave-one-out is used; k-fold or
k1 × k2-fold cross-validation is used in almost 70 per
cent of the cases. This shows that the need for multiple
replications is well understood by the community.
We check for dependency between data set size and
resampling strategy. As we see in Table VIII, k-fold
cross-validation is the most popular method. As we would
expect, k1 × k2-fold cv, leave-one-out and bootstrapping
are used more frequently with smaller data sets. If the
sample size is large, putting aside an independent test set
unused for training is the cheapest way, but surprisingly
it is used even with smaller data sets.

• Even though k-fold cross validation or other types of
resampling strategies are used frequently, the use of
statistical tests to compare the performance of different
classifiers is rare (in only about 21 per cent). Some papers
show standard deviations of the performance metrics
without applying any test, and some use only a single per-
formance value to conclude that one algorithm is better
than the other. This shows that the use of statistical tests
is not well established in the bioinformatics community
indicating the need for the approaches we discuss here.
We check for dependency between the use of a test
(and its type) and the data set size. With small data

TABLE IX
PERCENTAGES OF STATISTICAL TESTS FOR DIFFERENT DATA SET SIZES

10-99 100-999 1000-9999 10000+
Parametric Test 14 11 11 7
Nonparametric Test 11 12 14 9

TABLE X
PERCENTAGES OF THE NUMBER OF MODELS USED

Models 1 2 3 4 5 6 7–10 ≥ 11

Percentage 7 11 16 17 11 14 16 9

sets, statistics have large variance and are more affected
by chance and there is more need for a test to make
sure that differences are significant. Indeed as we see
in Table IX, as expected, we see tests used more with
smaller data sets. Statistical tests should always be used
while expecting a small power when the sample size is
small. We would have expected to see nonparametric tests
more with smaller data sets where central limit theorem
may not hold, but the two types of tests seem to be used
equally frequently.
In Table X, we show the percentages of the number of
models used in the studies. We see that 93 per cent of the
studies use more than a single model, which indicates the
need for statistical comparison. Note that we use the word
“model” here rather than “algorithm” because when we
compare k-NN with SVM, we count them as two models,
and also when we compare k-NN with and without
dimensionality reduction, we count them as two models
too; when we compare 1-NN and 3-NN, we do not count
them as two models but one model with different settings
of the hyperparameter. We see that the number of models
used—and hence needs to be compared—may be as high
as tens in some studies, which points out again the need
for rigorous experimentation and analysis.
We also check the measures that the tests use. In Ta-
ble XI, we show the number of papers that use the tests
(divided into two as parametric and nonparametric) and
the measures used. We see that tests mostly use either
error or AUC-ROC and for these, either the parametric
t test or nonparametric Wilcoxon’s signed rank test are
used most frequently; in very few cases, both are used.
This supports well our recommendations in this paper.

VII. CASE STUDIES

We use six well-known learning algorithms [1]:

• Knn: k-nearest neighbor with k between 1 and 10.
• Svm: Support vector machine (SVM) with a linear ker-

nel; we use the LIBSVM 2.82 library [41].
• Rip: Rule learning algorithm Ripper where a rule contains

a conjunction of univariate propositions [42].
• Mlp: Multilayer perceptron with 10 hidden units.
• Mdt: Multivariate decision tree algorithm where the de-

cision at a node is a linear combination of all inputs [43].
• RnF: Random forest is an ensemble of decision trees.

In single data set case studies, we use the acceptors and
donors data sets [44]. These are splice site detection data sets

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

9

TABLE XI
NUMBER OF PAPERS THAT USE STATISTICAL TESTS AND THE USED PERFORMANCE METRICS

Balanced
Error AUC-ROC AUC-PR F Measure Accuracy Recall Precision Other TP Σ

Paired t Test 5 9 1 2 1 1 1 1 18
One Tailed Z Test 1 1 2
F Test 1 1
Wald Test 1 1
ANOVA 1 2 3
Wilcoxon Signed Rank Test 6 6 2 2 1 1 14
Wilcoxon Rank Sum Test 1 3 4
McNemar’s Test 4 4
Sign Test 1 1 2
Kolmogorov-Smirnoff Test 1 1
Permutation / Randomization Test 1 1 1 1 2
Bootstrap Test 1 1
Unspecified / Other 1 1 1 1 4
Σ 18 22 2 7 2 2 3 2 1

and the trained models should distinguish ‘GT’ and ‘AG’ sites
occurring in the DNA sequence that function as splice sites
and those that do not. A positive example for a donor site
is a window of 13 residues of DNA around the ‘GT’ in an
actual human donor splice site, while a negative example is a
window of the same size around a ‘GT’ which is not itself a
real splice site. The examples for the acceptor site are similar
except that the window size is larger, i.e., a positive example
for an acceptor site is a window of 88 residues of DNA around
the ‘AG’ in an actual human acceptor splice site. There are
3889 (708 positive, 3181 negative) and 6246 (1324 positive,
4922 negative) examples in acceptors and donors respectively.

For multiple data set comparisons, we use the 11 cancer-
related gene expression data sets [45]; details are given in
Table XII. Nine are multi-class and two are two-class. The
data were produced by oligonucleotide-based technology. In
all data sets except srbct, RNA was hybridized to high-density
oligonucleotide Affymetrix arrays and gene expression values
were computed with Affymetrix software. In srbct, the ex-
perimenters used two-color cDNA platform with consecutive
image analysis and filtered for a minimum level of gene
expression. The genes or oligonucleotides with absent calls in
all samples were removed from the analysis to reduce noise.

Our methodology is as follows: A data set is first divided
into two parts, with 1/3 as the test set, and 2/3 as the
training set. The training set is then resampled using 5 × 2
cross-validation (cv) where 2-fold cv is done five times (with
stratification) and the roles swapped at each fold to generate
ten training and validation folds. The validation folds are used
to tune the hyperparameters of the algorithms, e.g., k of the k-
nearest neighbor, C of the SVM, pruning thresholds for rules
and trees, and so on. For the best setting, the ten classifiers
trained on the ten training folds are tested on the left-out test
set and these ten test results are reported and used in the
statistical tests.

A. Comparing Two Algorithms on a Single Data Set

We compare the k-nearest neighbors (Knn) and the mul-
tivariate decision tree (Mdt) on the acceptors data set. We
use the 5 × 2 cv F test for pairwise comparison as per our
discussion in Section IV-A.

0.08 0.1 0.12 0.14 0.16
0

1

2

3

4

5
knn
mdt

(a) Error

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Θ = 0.5

0.83 0.84 0.85 0.86 0.87 0.88 0.89
0

0.5

1

1.5

2

2.5

3

3.5

4

(b) ROC curve (c) AUC-ROC

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

Θ = 0.5

0.955 0.96 0.965 0.97 0.975 0.98
0

0.5

1

1.5

2

2.5

3

3.5

4

(d) PR curve (e) AUC-PR

Fig. 1. Comparison of Knn with Mdt on acceptors data set.

Because we do 5×2 cross-validation, we have ten test results
per algorithm. Figure 1 shows the (a) error histograms, (b)
ROC curves, (c) histograms of areas under the ROC curves,
(d) precision-recall curves, and (e) histograms of areas under
the precision-recall curves. In Fig. 1(b) and 1(d), we mark the
points that correspond to the threshold of 0.5; these are the
values used in error comparison (shown in Fig. 1(a)).

This case is a good example illustrating that different
measures make different things explicit. With the 5× 2 cv F
test in terms of error, the null hypothesis that the algorithms
have equal expected error is rejected—Mdt leads to smaller
expected error. As we see in the ROC curves, though the two
have similar tp values at the threshold of 0.5, Knn has higher

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

10

TABLE XII
DETAILS OF THE 11 CANCER-RELATED GENE EXPRESSION DATA SETS USED IN THIS STUDY.

Dataset Diagnostic Task # of examples # of features # of classes
9tumors 9 various human tumor types 60 5726 9
11tumors 11 various human tumor types 174 12533 11
14tumors 14 various human tumor types and 12 normal tissue types 308 15009 26
braintumor1 5 human brain tumor types 90 5920 5
braintumor2 4 malignant glioma types 50 10367 4
dlbcl Diffuse large B-cell lymphomas and follicular lymphomas 77 5469 2
leukemia1 3 types of leukemia 72 5327 3
leukemia2 3 types of leukemia 72 11225 3
lungtumor 4 lung cancer types and normal tissues 203 12600 5
prostatetumor Prostate tumor and normal tissues 102 10509 2
srbct small, round blue cell tumors of childhood 83 2308 4

fp and hence higher error. When we compare the two over the
whole ROC curves, we see that the two algorithms excel in
different parts but if we average over all possible losses, in
terms of AUC-ROC, the 5 × 2 cv F test finds no significant
difference. In terms of PR curves, the difference seems even
less slight and again 5×2 cv F test on AUC-PR fails to reject.

Even though insignificant, ROC curve favors Knn whereas
PR curve favors Mdt. We understand why if we compare Fig.
1(b) and (d): To the left of the curve (for high θ), Knn is
to the left of Mdt implying less fp and hence overall, Knn
seems to be better (In this case, for Knn, k = 10 and we have
meaningful intermediate thresholds whereas the leaves of Mdt
contain examples that highly favor one or the other class and
the only meaningful intermediate threshold is at 0.5). AUC-PR
does not make use of the fp (or tn) and hence this has no effect;
since Mdt has slightly higher precision than Knn overall, it
seems to be slightly better overall, though not significantly.

B. Comparing L > 2 Algorithms on a Single Data Set

The first case study can easily be generalized to more than
two algorithms. We may be (i) proposing a novel learning
algorithm and want to compare it against L − 1 previous
approaches, or (ii) run L off-the-shelf learning algorithms via
a data mining tool and decide which algorithm suits best to
our data set. We find examples of this during our survey of
the literature: Song et al. [46] propose an approach, Casclave,
to predict caspase cleavage sites; they use different sequence
encodings in their method and compare them over a single data
set that they have constructed from multiple sources. Jeong
et al. [47] test various classification algorithms on various
feature sets to predict protein functions; the performance of
the methods are compared over Yeast protein sequences.

As our second case study, we compare Rip, Mdt, Mlp, Svm,
and Knn on donors data set in terms of error, AUC-ROC, and
AUC-PR. The histograms are given in Figure 2. We see that
though the five algorithm seem very different in terms of error
and AUC-ROC, they seem more similar in terms of AUC-PR,
again indicating that the difference in behavior is due to the
negative instances.

For all three measures, ANOVA rejects the null hypothesis
that all algorithms have the same performance. We apply 5×2
cv F test as a pairwise post-hoc test as per our discussion in
Section IV-B and find the following orderings and cliques:

• Error: Mdt Svm Mlp Rip Knn

TABLE XIII
ERROR DIFFERENCES OF Mlp−RnF ON THE 11 TUMOR DATA SETS.

9tum 11tum 14tum brai1 brai2 dlbcl
−3.64 −0.49 12.16 −12.81 1.11 −10.37

leuk1 leuk2 lung prost srbct
−12.4 0.4 −3.91 −3.71 −1.38

• AUC-ROC: Svm Mlp Knn Mdt Rip

• AUC-PR: Svm Mlp Knn Rip Mdt

In terms of error, since Rip is significantly different from
Mdt but not from Svm nor Mlp, (Mdt, Svm, Mlp) and (Svm,
Mlp, Rip) form a clique. On the other hand, as seen in the
figure, Knn is significantly worse than all other algorithms. In
terms of AUC-ROC, Mdt and Rip have similar performance,
they form a single group and perform worse than the other
algorithms. There is no significant difference between Mlp and
Svm or Knn, but since the last two are significantly different
from each other, two cliques are formed: (Svm, Mlp) and
(Mlp, Knn).

In terms of AUC-PR, Mdt is not significantly different from
Svm using 5×2 cv F test, so although ANOVA rejects the
null hypothesis that all algorithms have the same AUC-PR,
we say that all five algorithms form a single clique. This may
happen in real life, tests for the same purpose may decide
differently due to different properties (ANOVA is not a paired
test) or assumptions.

We can use MultiTest [32] to get rid of the underlines and
get a full ordering. For example, when we apply MultiTest
with error as the performance measure and average space
complexity as the cost measure, the ordering we get is (from
best to worst: ‘<’ means “preferred to”): Mdt < Rip < Mlp <
Svm < Knn; if we use average training time to prefer faster
algorithms, we get Mlp < Mdt < Rip < Svm < Knn.

C. Comparing Two Algorithms on M > 1 Data Sets

Some examples of this scenario can be found: MacDonald
and Beiko [48] propose a rule mining method named CPAR
to extract microbial genotype-phenotype association rules and
compare it against the existing NETCAR algorithm over
multiple data sets. In converting multi-class problems to a set
of two-class problems, Taipa et al. [49] compare one-against-
all and error-correcting output codes over various data sets.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

11

Algorithm

Rip Mdt Mlp Svm Knn
0.049

0.055

0.060

0.066

0.071

0.077

0.082

0.088

0.093

0.099

0.104

Algorithm

Rip Mdt Mlp Svm Knn
0.895

0.904

0.913

0.922

0.930

0.939

0.948

0.957

0.966

0.974

0.983

Algorithm

Rip Mdt Mlp Svm Knn
0.677

0.709

0.741

0.773

0.805

0.836

0.868

0.900

0.932

0.964

0.995

(a) Error (b) AUC-ROC (c) AUC-PR

Fig. 2. Comparison of Rip, Mdt, Mlp, Svm, and Knn on donors data set.

As a case study, we compare Mlp and RnF on the 11 tumor
data sets. Because nine of the 11 data sets are multi-class, we
cannot use AUC-ROC and AUC-PR directly, so we use error
only. We calculate the average error of each algorithm on the
ten folds of each data set and use Wilcoxon’s signed-rank test
as per our discussion in Section IV-C.

Error differences (Mlp−RnF) are shown in Table XIII. We
see that the negative differences occur a lot more than the
positive differences and are also bigger in magnitude and that
is why Wilcoxon’s signed-rank test rejects the null hypothesis
that the average ranks of the two algorithms are same. Overall,
Mlp performs better than RnF on these 11 tumor data sets.

D. Comparing L > 2 Algorithms on M > 1 data sets

Examples of this scenario are found in the literature: Zhu et
al. [50] propose a novel feature selection method before SVM
and compare their method against various other dimensionality
reduction techniques over multiple data sets. Liu et. al. [51]
propose a sparse SVM method for biomarker identification and
compare their method with three other methods over three data
sets, including a synthetic data set.

As a case study, we compare Rip, Mlp, RnF, Svm, and Knn
on the 11 tumor data sets in terms of error. Table XIV shows
the error rates of Rip, Mlp, RnF, Svm, and Knn. First we
apply Friedman’s test which rejects that the algorithms have
equal expected error. The result of the post-hoc Nemenyi’s test
can be seen in Figure 3, which can be rewritten as:

Svm Mlp RnF Knn Rip

We see that there are three cliques: (Svm, Mlp), (Mlp, RnF,
Knn), and (RnF, Knn, Rip). We can not directly conclude
that Svm is the best because there is no significant difference
between Svm and Mlp; we can not choose Mlp either because
RnF and Knn are as good (but worse than Svm).

We can use Multi2Test [34] here to get a full ordering. If
we use space complexity as the cost measure and Nemenyi’s
test as the pairwise test on error, we get Rip < Mlp < RnF <
Svm < Knn, whereas with training time as the cost measure,
we get Knn < Rip < RnF < Svm < Mlp.

1 2 3 4 5

KnnSvm

Rip

Rnf

Mlp

Fig. 3. The result of post-hoc Nemenyi’s test.

VIII. CONCLUSIONS

As in all machine learning applications, in bioinformatics
too, the correct use of experiment design and analysis is of
paramount importance for results to be considered significant.
Our contributions here are as follows:

• We review the basics of the design and analysis of
experiments discussing the correct use of resampling
methods and hypothesis testing in the comparison of
machine learning methods.

• We give the results of a survey of over 1500 papers pub-
lished in the last two years in three major bioinformatics
journals to check for the current practice, good and bad.
To summarize, our principal findings are:

– Most applications are two-class problems.
– Not only accuracy/misclassification error, but mea-

sures such as precision/recall, ROC/AUC-ROC are
relevant and indeed are widely used.

– Most bioinformatics data is not large. Nearly half has
fewer than 1000 instances.

– Most bioinformatics data is high dimensional. Nearly
half has more than 1000 dimensions.

– Dimensionality reduction hence is an important re-
search topic and such methods are heavily used.

– There does not seem to be any learning method heav-
ily favored. The use of decision trees and support
vector machines seem to be slightly more frequent.

– The need for resampling seems to be accepted by
the community. Around 70 per cent of the papers
use some sort of cross-validation.

– Though resampling is popular, statistical tests to
check for significant difference is rare, only in 21

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

12

TABLE XIV
ERROR RATES OF Rip, Mlp, RnF, Svm, AND Knn ON 11 TUMOR DATA SETS.

Dataset Rip Mlp RnF Svm Knn
9tumors 72.73±8.57 86.36±0.00 65.91±9.40 51.36±12.87 62.27±10.29

11tumors 30.00±1.74 60.16±10.08 33.77±5.42 16.72±2.42 33.28±5.89
14tumors 64.41±3.01 82.97±2.63 58.11±3.19 51.71±2.66 70.27±3.96

braintumor1 25.31±6.50 37.50±0.00 31.56±5.60 14.38±3.02 18.75±4.42
braintumor2 42.22±14.63 72.22±0.00 33.33±8.69 31.67±9.09 34.44±9.37

dlbcl 20.74±5.00 24.81±3.51 23.33±2.50 11.11±3.90 12.96±5.59
leukemia1 25.20±8.44 46.00±6.32 21.20±5.98 12.40±6.10 8.80±4.54
leukemia2 20.40±2.95 48.00±12.36 14.00±4.71 7.20±4.54 14.40±10.70
lungtumor 10.00±3.64 24.06±5.56 17.83±3.75 5.51±1.65 13.91±3.82

prostatetumor 25.43±4.94 19.14±4.87 21.43±9.45 10.86±5.68 17.71±4.00
srbct 23.45±6.66 40.35±7.10 12.07±7.13 7.93±6.09 10.69±8.36

per cent. Some papers show only mean and standard
deviations without any test, and some use only a
single value. This is probably our most significant
finding and indicates the relevance of this paper.

• We define four scenarios which we observe frequently in
the machine learning applications in bioinformatics and
for those, we discuss the proper statistical methodology.

• For each of these scenario, we include a case study where
we show an example use of the proposed methodology
on a real-world bioinformatics application with state-of-
the-art learning algorithms.

• A section on related work shows the evolution of statisti-
cal methodology and contains pointers to related papers.

Our discussion in this paper is for classification; though re-
gression algorithms are used less frequently in bioinformatics,
a similar study can also be carried out for regression.

ACKNOWLEDGMENTS

We would like to thank the Editor and the Reviewers for
their constructive comments, suggestions, pointers to related
literature, and pertinent questions which allowed us to better
situate our work as well as organize the manuscript and
improve the presentation. This work has been supported by
the Turkish Scientific Technical Research Council (TÜBİTAK)
EEEAG 109E186 and Boğaziçi University Research Funds
BAP 5701.

REFERENCES

[1] E. Alpaydın, Introduction to Machine Learning, 2nd ed. The MIT
Press, 2010.

[2] D. C. Montgomery, Design and Analysis of Experiments, 7th ed. Wiley,
2009.

[3] T. Fawcett, “An introduction to ROC analysis,” Pattern Recognition
Letters, vol. 27, pp. 861–874, 2006.

[4] V. V. Raghavan, G. S. Jung, and P. Bollmann, “A critical investigation
of recall and precision as measures of retrieval system performance,”
ACM Transactions on Information Systems, vol. 7, pp. 205–229, 1989.

[5] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in International Conference on Machine Learning,
2006, pp. 233–240.

[6] T. G. Dietterich, “Approximate statistical tests for comparing supervised
classification learning classifiers,” Neural Computation, vol. 10, pp.
1895–1923, 1998.

[7] E. Alpaydın, “Combined 5×2 cv F test for comparing supervised
classification learning classifiers,” Neural Computation, vol. 11, pp.
1975–1982, 1999.

[8] B. Efron and R. Tibshirani, “Improvements on cross-validation: The
.632+ bootstrap method,” Journal of American Statistical Association,
vol. 92, pp. 548–560, 1997.

[9] J. Demsar, “Statistical comparisons of classifiers over multiple data sets,”
Journal of Machine Learning Research, vol. 7, pp. 1–30, 2006.

[10] P. R. Cohen, Empirical Methods for Artificial Intelligence. MIT Press,
1995.

[11] T. Mitchell, Machine Learning. McGraw-Hill, 1997.
[12] S. L. Salzberg, “On comparing classifiers: Pitfalls to avoid and a rec-

ommended approach,” Data Mining and Knowledge Discovery, vol. 1,
pp. 317–328, 1997.

[13] C. Nadeau and Y. Bengio, “Inference for the generalization error,”
Machine Learning, vol. 52, pp. 239–281, 2003.

[14] R. R. Bouckaert, “Estimating replicability of classifier learning exper-
iments,” in International Conference on Machine Learning, 2004, pp.
15–22.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical
Learning, 3rd ed. New York: Springer Verlag, 2011.

[16] J. A. Hanley and B. J. McNeil, “The meaning and use of the area under
a receiver operating characteristic (ROC) curve,” Radiology, vol. 143,
pp. 29–36, 1982.

[17] C. X. Ling, J. Huang, and H. Zhang, “AUC: a better measure than
accuracy in comparing learning algorithms,” in International Joint
Conference on Artificial Intelligence. Springer, 2003, pp. 329–341.

[18] J. Huang, J. Lu, and C. Ling, “Comparing naive Bayes, decision trees,
and SVM with AUC and accuracy,” in IEEE International Conference
on Data Mining, 2003, pp. 553–556.

[19] A. P. Bradley, “The use of the area under the ROC curve in the evaluation
of machine learning algorithms,” Pattern Recognition, vol. 30, pp. 1145–
1159, 1997.

[20] J. A. Hanley and B. J. McNeil, “A method of comparing the areas under
receiver operating characteristic curves derived from the same cases,”
Radiology, vol. 148, pp. 839–843, 1983.

[21] C. Cortes and M. Mohri, “Confidence intervals for the area under the
ROC curve,” in Neural Information Processing Systems. The MIT
Press, 2004, pp. 305–312.

[22] H. C. Bravo, G. Wahba, K. E. Lee, B. E. K. Klein, R. Klein, and
S. K. Iyengar, “Examining the relative influence of familial, genetic,
and environmental covariate information in flexible risk models,” in
Proceedings of the National Academy of Sciences, vol. 106, 2009, pp.
8128–8133.

[23] G. M. Weiss and F. Provost, “Learning when training data are costly:
The effect of class distribution on tree induction,” Journal Of Artificial
Intelligence Research, vol. 19, pp. 315–354, 2003.

[24] B. Hanczar, J. Hua, C. Sima, J. Weinstein, M. Bittner, and E. R.
Dougherty, “Small-sample precision of roc-related estimates,” Bioinfor-
matics, vol. 26, no. 6, pp. 822–830, 2010.

[25] S. J. Swamidass, C.-A. Azencott, K. Daily, and P. Baldi, “A croc stronger
than roc: Measuring, visualizing, and optimizing early retrieval,” Bioin-
formatics, vol. 26, no. 10, pp. 1348–1356, 2010.

[26] A. Folleco, T. M. Khoshgoftaar, and A. Napolitano, “Comparison of
four performance metrics for evaluating sampling techniques for low
quality class-imbalanced data,” in International Conference on Machine
Learning and Applications, 2008, pp. 153–158.

[27] E. Bloedorn, I. Mani, and T. R. Macmillan, “Machine learning of user
profiles: Representational issues,” in National Conference on Artificial
Intelligence, 1996, pp. 433–438.

[28] T. C. W. Landgrebe, P. Paclik, and R. P. W. Duin, “Precision-recall
operating characteristic (P-ROC) curves in imprecise environments,” in
International Conference on Pattern Recognition, 2006, pp. 123–127.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

13

[29] S. Clemencon and N. Vayatis, “Nonparametric estimation of the
precision-recall curve,” in Proceedings of the 26th Annual International
Conference on Machine Learning, vol. 382, 2009, pp. 185–192.

[30] S. B. Bengio, J. Marithoz, and M. Keller, “The expected performance
curve,” in International Conference on Machine Learning, 2005, pp.
9–16.

[31] C. Drummond and R. C. Holte, “Cost curves: An improved method for
visualizing classifier performance,” Machine Learning, vol. 65, no. 1,
pp. 95–130, Oct. 2006.

[32] O. T. Yıldız and E. Alpaydın, “Ordering and finding the best of K > 2

supervised learning algorithms,” IEEE Transactions on Pattern Analysis
Machine Intelligence, vol. 28, no. 3, pp. 392–402, 2006.

[33] P. D. Turney, “Types of cost in inductive concept learning,” in Workshop
on Cost-Sensitive Learning in 17th International Conference on Machine
Learning, Stanford University, CA, 2000, pp. 15–21.

[34] A. Ulaş, O. T. Yıldız, and E. Alpaydın, “Cost-conscious comparison
of supervised learning algorithms over multiple data sets,” Pattern
Recognition, vol. 45, pp. 1772–1781, 2012.

[35] A. Dean and D. Voss, Design and Analysis of Experiments. New York:
Springer Verlag, 1999.

[36] S. Garcı́a and F. Herrera, “An extension on “statistical comparisons of
classifiers over multiple data sets” for all pairwise comparisons,” Journal
of Machine Learning Research, vol. 9, pp. 2677–2694, 2008.

[37] S. Holm, “A simple sequentially rejective multiple test procedure,”
Scandinavian Journal of Statistics, vol. 6, pp. 65–70, 1979.

[38] J. P. Shaffer, “Modified sequentially rejective multiple test procedures,”
Journal of the American Statistical Association, vol. 81, no. 395, pp.
826–831, 1986.

[39] G. Bergmann and G. Hommel, “Improvements of general multiple test
procedures for redundant systems of hypotheses,” in Multiple Hypothe-
ses Testing, P. Bauer, G. Hommel, and E. Sonnemann, Eds., 1988, pp.
100–115.

[40] L. J. Jensen and A. Bateman, “The rise and fall of supervised machine
learning techniques,” Bioinformatics, vol. 27, no. 24, pp. 3331–3332,
2011.

[41] C. C. Chang and C. J. Lin, LIBSVM: a library
for support vector machines, 2001. [Online]. Available:
http://www.csie.ntu.edu.tw/∼cjlin/libsvm

[42] W. W. Cohen, “Fast effective rule induction,” in International Confer-
ence on Machine Learning, 1995, pp. 115–123.

[43] O. T. Yıldız and E. Alpaydın, “Linear discriminant trees,” International
Journal of Pattern Recognition and Artificial Intelligence, vol. 19, no. 3,
2005.

[44] D. Kulp, D. Haussler, M. G. Reese, and F. H. Eeckman, “A generalized
hidden markov model for the recognition of human genes in dna,” in
International Conference on Intelligent Systems for Molecular Biology,
1996.

[45] A. Statnikov, C. Aliferis, I. Tsamardinos, D. Hardin, and S. Levy, “A
comprehensive evaluation of multicategory classification methods for
microarray gene expression cancer diagnosis,” Bioinformatics, vol. 21,
pp. 631–643, 2005.

[46] J. Song, H. Tan, H. Shen, K. Mahmood, S. E. Boyd, G. I. Webb,
T. Akutsu, and J. C. Whisstock, “Cascleave: towards more accurate
prediction of caspase substrate cleavage sites,” Bioinformatics, vol. 26,
pp. 752–760, 2010.

[47] J. C. Jeong, X. Lin, and X.-W. Chen, “On position-specific scoring
matrix for protein function prediction,” IEEE Transactions on Compu-
tational Biology and Bioinformatics, vol. 8, pp. 308–315, 2011.

[48] N. J. MacDonald and R. G. Beiko, “Efficient learning of microbial
genotype-phenotype association rules,” Bioinformatics, vol. 26, pp.
1834–1840, 2010.

[49] E. Tapia, L. Ornella, P. Bulacio, and L. Angelone, “Multiclass classi-
fication of microarray data samples with a reduced number of genes,”
BMC Bioinformatics, vol. 12, pp. 1471–2105, 2011.

[50] S. Zhu, D. Wang, K. Yu, T. Li, and Y. Gong, “Feature selection for
gene expression using model-based entropy,” IEEE Transactions on
Computational Biology and Bioinformatics, vol. 7, pp. 25–36, 2010.

[51] Z. Liu, S. Lin, and M. T. Tan, “Sparse support vector machines
with lp penalty for biomarker identification,” IEEE Transactions on
Computational Biology and Bioinformatics, vol. 7, pp. 100–107, 2010.

Ozan IRSOY received his BA in Mathematics and
BSc in Computer Engineering (double major) from
Boğaziçi University in 2012 and is starting soon
the PhD program in computer science at Cornell
University.

Olcay Taner YILDIZ received his BSc, MSc, and
PhD degrees in computer science from Boğaziçi
University in 1997, 2000, and 2005. He did postdoc-
toral work at the University of Minnesota in 2005.
He is associate professor of Computer Engineering
at Işık University. He worked on machine learning,
specifically model selection and decision trees. His
current research is on software engineering, natural
language processing, and bioinformatics.

Ethem ALPAYDIN received his BSc from Boğaziçi
University in 1987 and PhD from EPF Lausanne
in 1990. He did his postdoctoral work at ICSI,
Berkeley in 1991 and he visited MIT in 1994,
ICSI, Berkeley in 1997 (as a Fulbright scholar) and
IDIAP, Switzerland in 1998. He is a professor of
Computer Engineering at Boğaziçi University since
1991. His book Introduction to Machine Learning
was published by The MIT Press in 2004, which
since has been translated to German, Chinese and
Turkish.

IEEE TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS
This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication.

